

High-energy Astrophysics Overview

Ke Fang University of Wisconsin-Madison P5 Town Hall at Argonne, Mar 23, 2023

- New since last P5: detection of Gravitational Waves and High-energy neutrinos!
- This talk: cosmic particles, including high-energy neutrinos, gamma-rays, and cosmic rays

Measure properties of fundamental particles at energies beyond the reach of man-made accelerators

- Measure properties of fundamental particles at energies beyond the reach of man-made accelerators
- Search for particle-like dark matter

See remarks by Andrea Albert and Pat Harding

- Measure properties of fundamental particles at energies beyond the reach of man-made accelerators
- Search for particle-like dark matter

See remarks by Andrea Albert and Pat Harding

- Measure properties of fundamental particles at energies beyond the reach of man-made accelerators
- Search for particle-like dark matter
- Study new particles and interactions beyond the standard model

Snowmass 21 CF report

See remarks by Carlos Argüelles Delgado and Stephanie Wissel

- Measure properties of fundamental particles at energies beyond the reach of man-made accelerators
- Search for particle-like dark matter
- Study new particles and interactions beyond the standard model

Complementary to particle physics facilities!

Snowmass 21 CF report

See remarks by Carlos Argüelles Delgado and Stephanie Wissel

Visible light: 2-3 eV

A blooming field: what's learnt since last P5

- Existence
- Astrophysics
- Particle physics

A blooming field: what's learnt since last P5

• **Detection** of TeV-PeV astrophysical ν [IceCube Science 2013, PRL 2014, 2015, 2020] and 100 TeV - 1PeV γ [HAWC PRL 2021, Tibet PRL 2021, LHAASO Nature 2021, Science 2021]

- Existence
- Astrophysics
- Particle physics
- Stellar-mass cosmos probed by TeV γ: black holes [HAWC Nature 2018, MAGIC Nature 2019, H.E.S.S Nature 2019, Science 2021] and stellar wrecks [HAWC Science 2017, PRL 2020, H.E.S.S Science 2022]
- Supermassive blackholes probed by TeV ν and γ [IceCube Science 2018ab, 2022, H.E.S.S. Nature 2020]
- Origin of cosmic rays: dipole in the arrival direction of > 8 EeV cosmic rays [Auger, Science 2017]
- Particle properties and interaction: Measurement of multi-TeV ν-nucleon cross section and inelasticity
 [IceCube Nature 2017], Glashow resonance [IceCube, Nature 2021], fluctuations in muon number [Auger PRL 2016, 2021], neutrino oscillations and flavor ratio [IceCube PRL 2015, 2018]
- Constraints on dark matter annihilation and decay signals [H.E.S.S. PRL 2016, 2018, 2022, MAGIC PRL 2023, LHAASO PRL 2022, Auger PRL 2023]
- Constraints on BSM: Lorentz invariance [HAWC PRL 2020], sterile neutrinos [IceCube PRL 2016, 2020, 2022], nonstandard interactions [IceCube PRL 2022]

- Existence
- Astrophysics
- Particle physics

Are there neutrinos above ~10 PeV?

- Existence
- Astrophysics
- Particle physics

- Are there neutrinos above ~10 PeV?
- What are the sources of the bulk of the TeV-PeV neutrinos observed by IceCube?
- Where are the **PeV hadron colliders** ("PeVatrons") in our Milky Way?
- How does nature **accelerate** particles to > 1 EeV?

- Existence
- Astrophysics
- Particle physics

- Are there neutrinos above ~10 PeV?
- What are the sources of the bulk of the TeV-PeV neutrinos observed by IceCube?
- Where are the PeV hadron colliders ("PeVatrons") in our Milky Way?
- How does nature **accelerate** particles to > 1 EeV?
- Particle properties and interaction: mixing angles, cross sections at higher energies
- Indirect searches: what will be the fate of WIMPs and thermal dark matter?
- **BSM**: ν_{τ} appearance, sterile neutrinos, nonstandard interactions

- Existence
- Astrophysics
- Particle physics

Muon excess in cosmic-ray data at ~10 EeV

Auger Collaboration, PRL (2016, 2021)

Muon excess in cosmic-ray data at ~10 EeV

Muon excess in cosmic-ray data at ~10 EeV

Deficit in model prediction of muons from hadron interactions. Hint of BSM physics?

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos

More e^+ observed than predicted by cosmic ray propagation in the Galaxy

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos

More e^+ observed than predicted by cosmic ray propagation in the Galaxy 10¹ $E^3 J(E) [GeV^2 m^{-2} s^{-1} sr^{-1}]$ δ =0.33 (base) 3σ range (base) AMS-02 e+ 10⁻³ 10⁻² 10⁻¹ Energy [TeV]

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos

More e^+ observed than predicted by cosmic ray propagation in the Galaxy 10² 10¹ $E^3 J(E) [GeV^2 m^{-2} s^{-1} sr^{-1}]$ δ =0.33 (base) 10⁻² 10⁻³ 10 Energy [TeV] Lower e^+ expected at Earth due to confinement by TeV halo

Astrophysics "standard model" of middle-aged pulsars turned out wrong and impacted indirect searches

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos
- The much higher energy carried by neutrinos than gamma-rays

IceCube Collaboration, PRL (2020) IceCube Collaboration, Science (2022)

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos
- The much higher energy carried by neutrinos than gamma-rays

IceCube Collaboration, PRL (2020) IceCube Collaboration, Science (2022)

- Muon excess in cosmic-ray data at ~10 EeV
- TeV gamma-ray halos
- The much higher energy carried by neutrinos than gamma-rays

A new look of the high-energy Universe not seen through photons before!

IceCube Collaboration, PRL (2020) IceCube Collaboration, Science (2022)

Moving Forward - We need better sensitivity

Moving Forward - We need better sensitivity

• A factor of a few improvement in sensitivity may open up the view to an order-of-magnitude more sources

Moving Forward - We need better sensitivity

A factor of a few improvement in sensitivity may open up the view to an order-of-magnitude more sources

Moving Forward - We need better sensitivity

A factor of a few improvement in sensitivity may open up the view to an order-of-magnitude more sources

Moving Forward - We need better sensitivity

A factor of a few improvement in sensitivity may open up the view to an order-of-magnitude more sources

Moving Forward - We need more sky coverage

- Southern sky has never been explored by a wide-field air shower gamma-ray observatory
- More instantaneous sky coverage is needed to capture transients (GRB 221009A as a good example)

Plot credit: Marcos Santander

Snowmass 21 CF7 report Snowmass 21 white paper: 2203.08096

Snowmass 21 CF7 report Snowmass 21 white paper: 2203.08096

Snowmass 21 CF7 report Snowmass 21 white paper: 2203.08096

Snowmass 21 CF7 report Snowmass 21 white paper: 2203.08096

Experiment	Feature	Cosmic Ray Science*	Timeline	
Pierre Auger Observatory	Hybrid array: fluorescence, surface e/μ + radio, 3000 km ²	Hadronic interactions, search for BSM, UHECR source populations, $\sigma_{\text{p-Air}}$	AugerPrime upgrade	
Telescope Array (TA)	Hybrid array: fluorescence, surface scintillators, up to 3000 km ²	UHECR source populations proton-air cross section (σ_{p-Air})	TAx4 upgrade	
IceCube / IceCube-Gen2	Hybrid array: surface + deep, up to 6 km ²	Hadronic interactions, prompt decays, Galactic to extragalactic transition	o portate serrete	loyment IceCube-Gen2 operation
GRAND	Radio array for inclined events, up to 200,000 km ²	UHECR sources via huge exposure, search for ZeV particles, $\sigma_{\text{p-Air}}$	GRANDProto GRAND 300 10k	GRAND 200k multiple sites, step by step
POEMMA	Space fluorescence and Cherenkov detector	UHECR sources via huge exposure, search for ZeV particles, $\sigma_{\text{p-Air}}$	JEM-EUSO program	POEMMA
GCOS	Hybrid array with $X_{\text{max}} + e/\mu$ over $40,000 \text{ km}^2$	UHECR sources via event-by-event rigidity, forward particle physics, search for BSM, $\sigma_{\text{p-Air}}$	GCOS R&D + first site	GCOS further sites
*All experiments contribute to multi-messenger astrophysics also by searches for UHE neutrinos and photons: 2025 2030 2030				

^{*}All experiments contribute to multi-messenger astrophysics also by searches for UHE neutrinos and photons; several experiments (IceCube, GRAND, POEMMA) have astrophysical neutrinos as primary science case.

Snowmass 21 CF7 report

See remarks by Eric Mayotte and Frank Schroeder

• "Cosmic-particle physics" is complementary

- "Cosmic-particle physics" is complementary
- Particles add to electromagnetic and gravitational waves to reveal the unknown Universe like never before

- "Cosmic-particle physics" is complementary
- Particles add to electromagnetic and gravitational waves to reveal the unknown Universe like never before
- Key to successes of the next decade: better sensitivities and more sky coverage

- "Cosmic-particle physics" is complementary
- Particles add to electromagnetic and gravitational waves to reveal the unknown Universe like never before
- Key to successes of the next decade: better sensitivities and more sky coverage
- Current-generation cosmic particle detectors are retiring. New detectors are urgently needed

Astro2020 Report by Panel of Particle Astrophysics and Gravitation

Backup Slides

Snowmass 21 CF1 report

GeV-TeV Gamma-ray Experiments

Snowmass 21 CF1 report

Neutrinos Experiments

Funded, upcoming US-lead

Snowmass 21 CF7 report

Effective area and angular resolution

Rough estimates

Fixed energy at 100 TeV

100 TeV (numu CC)	Instr. Volume (NC,nu-e, nu-tau)	Effective area nu- mu [m^2]	Ang. resolution [deg]
IceCube	1	100*	0.3
Baikal GVD	~0.4		0.1
KM3NeT ARCA	~1	100**	0.1
P-ONE	1 (cluster vol., envelope: 3)		0.1
TRIDENT	7.5	~700**	0.1
IceCube Gen2	8	~300**	0.2

Refs.

https://doi.org/10.1016/j.jheap.2022.08.001

https://arxiv.org/pdf/2005.09493.pdf

+1 KM3 instr,

trident: 2207.04519

~3 km3 with empty space betw. clusters

IceCube: https://arxiv.org/abs/2008.04323. (and Tech. design rep in prep.)

** reconstruction level

*analysis level

***100m track length inside (~trigger level)

30

Slide from Albrecht Karle's talk at NCfA Symposium, 2023

^{***100}m track langth

Baikal: Dzilkibaev, priv. comm.

Snowmass 21 CF1 report